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Sexually transmitted infections (STIs) in animals may have profound eco-evolutionary consequences, yet experimental 
studies of the sexual transmission of pathogens in wild populations are lacking. Here to identify sexually transmitted 
bacteria, we experimentally manipulated ejaculate transfer in black-legged kittiwakes (Rissa tridactyla) by blocking 
insemination after pairs had commenced copulating. We found that a Corynebacterium pathogenic strain was cleared 
from the cloaca of females five times more frequently in the experimental group, indicating it had been sexually 
transferred. A typical feature of STIs is that they reduce fertility, and in our kittiwake population, infected females 
suffered significantly higher hatching failure than uninfected females. Nevertheless, infected females achieved the 
same reproductive success as uninfected females by laying earlier and producing more eggs, suggesting reproductive 
compensation, a common strategy adopted by infected animals and plants. Our results provide new insights into the 
fitness consequences of STIs in a wild species and may stimulate further research on their evolutionary implications.

ADDITIONAL KEYWORDS:  bacteria – birds – Corynebacterium – pathogen – reproductive success – sexual 
transmission.

INTRODUCTION

Sexually transmitted infections (STIs) infect 
taxonomically diverse hosts and occur in virtually 
all sexually reproducing animal groups, including 
mammals, birds, insects and gastropods (Sheldon, 
1993; Lockhart et al., 1996; Knell & Webberley, 2004), 
as well as in plants (Wennström et al., 2003). They 
differ from other infectious diseases by being less 
likely to cause mortality, more likely to reduce fertility 

and occurring at more stable frequencies over time 
(Lockhart et al., 1996). Sexually transmitted parasites 
have unique implications in evolutionary ecology, as 
they may cause intense selective pressures on mating 
system, behaviours and reproductive physiology 
(Hamilton & Zuk, 1982; Sheldon, 1993; Lockhart 
et al., 1996; Kokko et al., 2002; Knell & Webberley, 
2004; McLeod & Day, 2014; Ashby & Boots, 2015; Zuk, 
2015). However, most studies of STIs have focused 
on domestic animals or wild species in captivity 
(Smith & Dobson, 1992; Lockhart et al., 1996), where 
selection might be relaxed. Research on wild species in 
their natural habitats is therefore needed to identify 
mechanisms of selection that shape the coevolutionary 
dynamics between STIs and their hosts.
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In a previous study in wild black-legged kittiwakes 
(Rissa tridactyla; Helfenstein et al., 2004), we used 
an experimental method that blocked ejaculate 
transfer after pairs had commenced copulating (White 
et al., 2008), which revealed that cloacal bacterial 
communities of mates became increasingly dissimilar 
after inseminations were blocked (White et al., 2010). 
This result indicated that males transfer bacteria to 
their mates via copulation (White et al., 2010).

Here, we used a similar experimental design to 
search for sexually transmitted bacteria causing 
STIs in kittiwakes. First, we identified the bacterial 
phylotypes that are transferred during copulations, i.e. 
those that had been shared by mates before the start of 
the experiment and had become extinct in the female 
cloaca after inseminations were blocked. Second, we 
examined whether some of these sexually transmitted 
bacteria were associated with reduced reproductive 
performance.

MATERIAL AND METHODS

This study was conducted in the 2006, 2009 and 
2010 breeding seasons on a wild population of 
black-legged kittiwakes nesting on an abandoned 
US Air Force radar tower on Middleton Island 
(59°26′N, 146°20′W), Gulf of Alaska. For the blocked-
insemination experiment, we captured 70 randomly 
chosen kittiwake pairs during the prelaying phase. 
They were captured after they had commenced 
copulating, so that males had previously transferred 
their cloacal bacteria to their mates (White et al., 
2010). We sampled the cloacal bacteria of males and 
females by flushing the cloaca with 1 mL of saline 
solution. The males of 33 pairs were then fitted with 
the anti-insemination device, i.e. a ring placed over 
the cloaca and held in place with a harness. The 
remaining 37 males were fitted with the control 
device that allowed normal cloacal contact and 
insemination. All kittiwake pairs were used only 
once in the experiment. Method details are described 
elsewhere (White et al., 2008). We recaptured each 
pair when the first egg was laid and resampled their 
cloacal bacteria. The experimental devices were 
then removed from the males. Experiments were 
conducted in accordance with US laws and under 
permits from the US Fish and Wildlife Service and 
State of Alaska.

To investigate the impact of bacterial infection on 
host fitness, we captured 177 females and 171 males 
during the prelaying period that were not involved 
in the anti-insemination experiments. We sampled 
their cloacal bacteria as described above. Nests were 
monitored daily to assess each pair’s reproductive 
performance in the form of egg-laying, hatching and 
fledging.

For all sampled individuals, we characterized 
the cloacal bacterial assemblages using automated 
ribosomal intergenic spacer analysis (ARISA), which 
exploits the extreme inter-OTU (operational taxonomic 
units) variability in the length of the intergenic spacer 
(IGS) lying between the 16S and 23S rRNA genes 
(Ranjard et al., 2000). ARISA entails the amplification 
of DNA extracted from the bacterial community of 
interest using a fluorescently labelled primer and 
subsequent high-resolution electrophoresis in an 
automated system. This method has been optimized for 
the characterization of cloacal bacterial communities 
in kittiwakes (White et al., 2010; van Dongen et al., 
2013).

To search for bacteria that were potentially 
sexually transmitted, we examined the extinction 
frequencies of the 31 OTUs that we had identified 
in the cloacas of adult kittiwakes (van Dongen et al., 
2013) by comparing them between experimental and 
control pairs using Fisher’s exact tests. Blocking 
inseminations allowed us to distinguish sexual 
transmission from alternative modes of horizontal 
transmission between mates, as differences in cloacal 
bacteria between experimental and control groups 
can result exclusively from insemination and cloacal 
contact. This method is conservative as we would be 
unlikely to detect the sexual transmission of certain 
highly prevalent bacteria that are consistently part 
of the cloacal community and that may only rarely 
become extinct. Further, many gastrointestinal 
bacteria are known to be beneficial and would not 
be expected to become extinct because it would be 
adaptive for hosts to retain them (Lombardo et al., 
1999). Additionally, our design requires OTUs to be 
sufficiently prevalent to provide an adequate sample 
size for statistical analysis.

We then genetically characterized the bacteria 
identified as being sexually transmitted, by sequencing 
1524 bp of the 16S rRNA gene (including hypervariable 
regions 6–9:). We first amplified a part of both the IGS 
and the 16S gene, using a primer lying in the IGS 
(C34_IGS.R1: 5′-CACAGAAACCACAACACAGC-3′) 
and a universal bacterial primer located within the 
16S gene (784F: 5′-AGGATTAGATACCCTGGTA-3′). 
We then amplified the remainder of the 16S gene 
using a primer lying within variable region 7 (C34_
V7age_R: 5′-TCCCATGAGTCCCCACCATC-3′) and 
the universal primer 27F (5′-agagtttgatcctggctcag-3′).

We tested for associations between reproductive 
performance and infection by apparently sexually 
transmitted bacteria using generalized linear mixed 
models (GLMMs), incorporating kittiwake ID as a 
random effect. To control for confounding factors, we 
tested a range of models for each dependent variable 
that included different combinations of variables that 
we hypothesized may be correlated with the dependent 
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variable. Because we were interested in the effects of 
infection, all models included presence of the sexually 
transmitted bacteria as a fixed factor. To select the most 
parsimonious model, we used the Akaike information 
criterion (AIC) (Burnham et al., 2011). The model with 
the lowest AIC value was considered the best. When 
the model with the lowest and second lowest AIC 
values differed by less than 2, we selected the model 
with the least number of variables (Quinn & Keough, 
2002). For all analyses using GLMMs, we presented 
predicted means ± SE. All statistical analyses were 
conducted using SPSS 17.0 (SPSS, Chicago, IL, USA).

RESULTS AND DISCUSSION

Of the 31 OTUs identified, only one bacterium met the 
criteria of being of intermediate prevalence at the start 
of the experiment and showing experimental evidence 
of being sexually transmitted. Corynebacterium OTU 
34 (named C34 because it was the 34th OTU we had 
identified, GenBank accession number KJ160259; van 
Dongen et al., 2013) became extinct in experimental 
females’ cloacas five times more frequently than 
in control females (extinction rate in experimental 
females: 69%, N = 13 females sampled; control females: 
14%, N = 14 females sampled; Fisher’s exact test: 
P = 0.004, Fig. 1). This result might be explained by 
the ability of females to clear certain microbes from 
their cloaca in the absence of further inseminations 
by their mates (White et al., 2010). This interpretation 
is supported by a positive correlation between the 
duration of anti-insemination ring wear and the 
extinction frequency in experimental pairs (logistic 
regression - duration  ×  treatment: Nagelkerke 
r2 = 0.381, Wald χ2 = 6.386, N = 27, P = 0.012) but not 
in control pairs, suggesting that females were more 

effective at clearing their cloaca of C34 when they had 
more time to do so. Fourteen of the other 30 OTUs 
(47%) were not detected in the cloacas of females in 
either group, and the extinction frequencies of the 
remaining 16 OTUs did not differ between the two 
groups (0.316 < P < 1.000), suggesting they were not 
sexually transmitted or that we lacked the statistical 
power to detect sexual transmission.

We found that  C34 belongs to  the genus 
Corynebacterium, which includes many medically 
relevant species, several of which are known 
zoonoses (Bernard, 2012). Phylogenetic analyses 
revealed that the closest known relatives of C34 are 
Corynebacterium ciconiae and C. trachiae (Supporting 
Information Fig. S1), two bacteria isolated from the 
trachea of storks (Ciconia sp.) (Fernández-Garayzábal 
et al., 2004; Kämpfer et al., 2015). The next closest 
relative of C34 is Corynebacterium propinquum 
(Supporting Information Fig. S1), a pathogen known 
in humans (Díez-Aguilar et al., 2013), that can be 
sexually transmitted (Abdolrasouli & Roushan, 
2013). C34 also clusters closely with the pathogenic 
C. pseudodiphtheriticum (Díez-Aguilar et al., 2013) 
and more distantly with the causative agent of 
diphtheria (C.  diphtheriae) and the pathogenic 
C. pseudotuberculosis (Supporting Information, Fig. 
S1) (Bernard, 2012). Other species of Corynebacterium 
are associated with infertility in humans (Riegel et al., 
1995) and other mammals (Hartigan, 1980).

In female kittiwakes that were not involved in the 
anti-insemination experiment, C34 was detected in 
the cloacas of 53.4% of them. Eggs laid by infected 
females were significantly less likely to hatch than 
eggs laid by uninfected females (predicted proportion 
of eggs that hatched: infected females = 0.72 ± 0.04% of 
eggs, uninfected females = 0.80 ± 0.04% of eggs; Table 
1, Fig. 2A; Table S3). Sexually transmitted diseases 
are commonly associated with infertility in humans, 
animals and plants (Sheldon, 1993; Hurst et al., 1995; 
Lockhart et al., 1996; Knell & Webberley, 2004; Apari 
et al., 2014), but studies in wild vertebrates are scarce. 
Our results add to the evidence from wild koalas 
(Phascolarctos cinereus; Polkinghorne et al., 2013) 
and wild chimpanzees (Pan troglodytes; Keele et al., 
2009), where STIs were reported to cause reproductive 
failure in females.

Infected kittiwake females tended to lay more 
eggs than uninfected females (predicted number of 
eggs laid: infected females = 1.86 ± 0.04, uninfected 
females = 1.79 ± 0.04; Table 1, Fig. 2B; Table S3), and the 
numbers of chicks fledged by infected and uninfected 
females did not differ significantly (predicted number 
of chicks fledged: infected females = 0.55 ± 0.06, 
uninfected females = 0.52 ± 0.06; Table 1, Fig. 2C;  
Table S3). Infected females may thus achieve 
equivalent fledging success to that of uninfected 

Figure 1.  Extinction rate of C34 according to treatment. 
Number of pairs in which C34 was retained (grey bars) or 
became extinct (white bars) in the female cloaca when her 
mate was fitted with an anti-insemination ring or control 
device.
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females by making greater reproductive effort, such 
as by increasing their clutch size. In addition, infected 
females laid their eggs significantly earlier than 

uninfected females (predicted laying Julian-date of 
first egg: infected females = 154.4 ± 0.6 days, uninfected 
females = 156.2 ± 0.6 days; Table 1, Fig. 2D; Table S3). 

Figure 2.  Impact of C34 on reproduction success. Association between female infection by C34 and reproductive success, 
including proportion of eggs hatched (A), number of eggs laid (B), number of fledglings (C) and laying date of first egg (D). 
Data are shown as means ± SE.

Table 1.  Models outlining associations between infection of female kittiwakes by C34 and various reproductive variables. 
Each model incorporated infection as a fixed factor (highlighted in bold) and various other factors as covariables. The most 
parsimonious models are shown, as determined using Akaike’s information criterion

Dependent variable Predictor F d.f. P

Number of offspring fledged Infection 0.248 1152 0.619
 Laying date 22.894 1152 <0.001
 Number of eggs hatched 128.761 1152 <0.001
 Sampling year 34.138 2152 <0.001
Number of eggs laid Infection 3.787 1153 0.053
 Laying date 13.252 1153 <0.001
 Sampling year 6.964 2153 0.001
Proportion of eggs hatched Infection 5.612 1154 0.019
 Number of eggs laid 44.012 1154 <0.001
 Sampling year 20.877 2154 <0.001
Laying date of first egg Infection 8.110 1154 0.005
 Sampling year 37.320 2154 <0.001
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Early laying is a well-documented, costly tactic to 
increase reproductive success in birds in that it may 
increase the time window for subsequent breeding 
activities or reduce the lag between breeding and the 
seasonal peak of food abundance (Verhulst & Nilsson, 
2008). In our kittiwake population, there was a highly 
significant relationship between the date of egg-laying 
and the number of eggs laid (Table 1). Our finding that 
infected females made a greater reproductive effort 
suggests they had pursued a strategy of compensation, 
as is common in infected animals and plants (Shykoff 
& Kaltz, 1997; Sanz et al., 2001; Korves & Bergelson, 
2003; Knell & Webberley, 2004; Jones et al., 2008). 
Further investigating whether C34 infection and the 
associated greater reproductive effort entail long-term 
fitness costs in females would be crucial to determine 
their potential as selective pressure shaping strategies, 
such as monogamy or mate choice.

Some of our findings could hypothetically result 
from reduced fertility of males caused by C34. 
Specifically, damage to the reproductive organs or 
sperm could explain reduced hatching success, in 
which case the extra reproductive effort by females 
may be in compensation for lower male fertility. We 
examined this by performing the same analyses on 
171 males and found no effects of infection by C34 on 
any variables relating to reproductive performance 
(Supporting Information, Tables S1 and S4). 
Furthermore, among the reproductive variables that 
were significant for females, we found significant 
interactions between sex and infection. These 
analyses indicate that reproductive performance was 
affected by female, and not by male, infection (Tables 
S2 and S5).

In conclusion, to the best of our knowledge, our study 
provides the first manipulation of sperm transfer to 
demonstrate that a bacterium potentially causing 
infection is sexually transmitted in a wild species in 
its natural habitat. The ability to do so may stimulate 
further research on the role of STIs in shaping sexual 
behaviour and the coevolution of host–parasite 
dynamics in wild species.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.

Figure S1. 16S rRNA phylogenetic trees outlining the position of C34 relative to known species of Corynebacterium. 
Phylogenies were inferred using maximum likelihood and Bayesian methods. Thick-lined nodes represent 
those with high maximum likelihood bootstrap support (≥70%) and asterisks highlight nodes with Bayesian 
posterior probabilities ≥98%. The tree was rooted with Amycolatopsis mediterranei and Mycobacterium leprae. 
Corynebacteria isolated from birds are highlighted in red.
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Table S1. Models outlining associations between infection of male kittiwakes by C34 and various reproduction 
variables. Each model incorporated infection as a fixed factor (highlighted in bold) and various other factors as 
covariables. The most parsimonious models are shown, as determined using Akaike’s information criterion.
Table S2. Models outlining associations between the interaction between sex and infection by C34 on various 
reproduction variables. Each model incorporated sex × infection as a fixed factor (highlighted in bold) and various 
other factors as covariables. The most parsimonious models are shown, as determined using Akaike’s information 
criterion.
Table S3. The most parsimonious models explaining the effect of female infection with C34 on various reproduction 
variables. The most parsimonious models were determined using Akaike’s information criterion.
Table S4. The most parsimonious models explaining the effect of male infection with C34 on various reproduction 
variables. The most parsimonious models were determined using Akaike’s information criterion.
Table S5. The most parsimonious models explaining the effect of the interaction between sex and infection 
with C34 on various reproduction variables. The most parsimonious models were determined using Akaike’s 
information criterion.
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