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Behavioural avoidance of sperm ageing depends on 
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Inbreeding, i.e. the mating of genetically related individuals, can lead to reduced fitness and is considered to be a 
major selective force of mate choice. Although inbreeding avoidance has been found in numerous taxa, individuals 
may face constraints when pairing, leading to mating with suboptimal partners. In such circumstances, individuals 
that are able to avoid factors exacerbating detrimental effects of inbreeding should be favoured. Using the socially 
and genetically monogamous black-legged kittiwake (Rissa tridactyla), we explored whether the detrimental effects 
of inbreeding are exacerbated by sperm ageing (i.e. the post-meiotic senescence of sperm cells, mainly occurring 
within the female tracts after copulation), and whether they can be mitigated by behavioural tactics. First, by 
experimentally manipulating the age of the fertilizing sperm, we found that hatching failure due to sperm ageing 
increased with higher genetic similarity between mates. We then investigated whether more genetically similar pairs 
exhibited mating behaviours that prevent fertilization by old sperm. The more genetically similar mates were, the 
less likely they were to copulate early in the reproductive season and the more females performed post-copulatory 
sperm ejections. By flexibly adapting their behaviour in response to within-pair genetic similarity, kittiwakes may 
avoid exacerbation of inbreeding costs due to sperm ageing.

ADDITIONAL KEYWORDS:  fitness – gamete – genetic relatedness – post-copulatory choice – reproductive 
behaviours – sperm ageing – sperm senescence.

INTRODUCTION

Studies on reproductive strategies based on the 
genotypes of partners have been steadily growing 
(Jennions & Petrie, 2000; Neff & Pitcher, 2005; 
Kempenaers, 2007; Kamiya et al., 2014; Firman et al., 
2017). In particular, evidence has accumulated for 
avoidance of inbreeding, i.e. the mating of genetically 
related individuals (Pusey & Wolf, 1996; Hoffman 
et al., 2007; Mulard et al., 2009; Leclaire et al., 2013), 
in line with studies reporting a negative effect of 

inbreeding on fitness (Charlesworth & Charlesworth, 
1987; DeRose & Roff, 1999; Keller & Waller, 2002). 
Inbreeding can reduce fitness because of the 
expression of detrimental recessive alleles or the loss 
of overdominance at loci with heterozygote advantage 
(Charlesworth & Charlesworth, 1987; Roff, 2002). 
The detrimental effects of inbreeding on fitness are 
exacerbated under stressful conditions (Armbruster 
& Reed, 2005; Fox & Reed, 2011; Ihle et al., 2017), 
including adverse abiotic factors (e.g. temperature, 
drought), intraspecific competition (Armbruster & 
Reed, 2005; Fox & Reed, 2011) and high pathogen 
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load (Coltman et al., 1999; Ilmonen et al., 2008; Bello-
Bedoy & Nunez-Farfan, 2011).

Recently, sperm ageing, which is receiving growing 
attention in evolutionary biology (Reinhardt, 2007; 
Pizzari et al., 2008; White et al., 2008; Gasparini et al., 
2014, 2017, 2018; Firman et al., 2015; Vega-Trejo et al., 
2019), has been shown to exacerbate inbreeding (Tan 
et al., 2013). Sperm ageing refers to the post-meiotic 
senescence of haploid sperm cells and is independent 
from ageing of the diploid organism (Pizzari et al., 
2008). In Drosophila melanogaster, inbreeding 
decreases offspring viability when females are 
fertilized by old sperm but not by young sperm (Tan 
et al., 2013). However, the mechanisms by which sperm 
age and inbreeding interplay to modulate embryo 
survival or growth remain unclear. As they age, sperm 
cells accumulate damage in DNA and changes in DNA 
methylation profiles (Twigg et al., 1998; Aitken & 
Baker, 2006; Menezo et al., 2016), mainly as a result of 
oxidative stress (Reinhardt, 2007; Pizzari et al., 2008). 
These alterations of sperm DNA have deleterious 
effects on fertilization potential and the viability of 
zygotes and offspring (Tarin et al., 2000; White et al., 
2008; Gasparini et al., 2017), but can be repaired by 
post-fertilization mechanisms (Menezo et al., 2016). 
However, defections in DNA repair mechanisms may 
be associated with the expression of detrimental 
recessive alleles at genes controlling such mechanisms 
(Okayasu et al., 2000; Perez et al., 2007). Thus, one 
could speculate that an interplay between inbreeding 
and sperm ageing may decrease embryo and offspring 
viability.

The increased deleterious effects of sperm ageing 
in inbred reproductive events may have created 
selective pressures inducing the evolution of counter 
strategies. In numerous species, individuals avoid 
inbreeding through pre-copulatory mate choice 
(Hoffman et al., 2007; Mulard et al., 2009; Leclaire 
et al., 2013), post-copulatory strategies (Pizzari et al., 
2004; Bretman et al., 2009; Welke & Schneider, 2009) 
or both (Gasparini & Pilastro, 2011; Daniel & Rodd, 
2016). However, individuals do not necessarily have a 
choice of their sexual partner or can face permanent 
or temporary constraints in choosing within a 
limited pool of potential mates. These constraints 
include various ecological restrictions such as limited 
search areas (Pusey & Wolf, 1996; Frankham, 1998), 
asynchrony in reproductive phenology (Stutchbury & 
Morton, 1995; Lehmann & Perrin, 2003) or biased sex-
ratio (Kvarnemo & Simmons, 1999; Tinghitella et al., 
2013). When breeding individuals have no option but 
to mate with genetically similar partners, they may 
limit fitness costs by avoiding factors exacerbating the 
deleterious effects of inbreeding. Several strategies 
preventing fertilization by old sperm have been 
proposed (Reinhardt, 2007), but only a few have 

been empirically described. These include female 
preferential selection of spermatophores containing 
young sperm (Reinhardt & Siva-Jothy, 2005) and 
sperm ejection by females following copulations 
occurring long before the female fertile period (Wagner 
et al., 2004; White et al., 2008). However, whether 
these strategies are preferentially used by individuals 
paired with genetically similar mates (i.e. facing a 
higher probability of suffering from fertilization by old 
sperm) has yet to be examined.

Here, we present evidence that sperm ageing 
exacerbates the detrimental effects of inbreeding in 
the black-legged kittiwake (Rissa tridactyla), and 
report behavioural tactics that might reduce such 
effects. Kittiwakes are strictly monogamous during a 
given breeding season (Helfenstein et al., 2004b) and 
frequently retain the same mate over several years, 
although divorce can occur after breeding failure 
(Naves et al., 2007). Breeding failure in kittiwakes 
is associated with sperm ageing (Wagner et al., 2004; 
White et al., 2008), and might be limited by females 
preferentially ejecting sperm following precocious 
copulations (i.e. sperm that would have been old by the 
time of fertilization) (Wagner et al., 2004). Kittiwakes 
also suffer reproductive costs from inbreeding, and 
they preferentially mate with genetically dissimilar 
mates (Mulard et al., 2009), possibly via an odour-
based mechanism (Leclaire et al., 2012). However, 
not all individuals pair with a genetically dissimilar 
mate, perhaps because of constraints on mate choice 
(Mulard et al., 2009). Being strictly monogamous, 
kittiwakes cannot avoid inbreeding through post-
pairing strategies (e.g. extra-pair mating, cryptic 
female choice), and are thus expected to have evolved 
strategies that limit the factors exacerbating the 
deleterious effects of inbreeding. If sperm ageing 
exacerbates the detrimental effects of inbreeding 
in kittiwakes, we therefore predict that the more 
genetically similar mates are, the more they will use 
the behavioural strategies preventing fertilization by 
aged sperm (i.e. avoidance of precocious copulations, 
and sperm ejection after precocious copulations).

Our long-term monitoring of kittiwake populations 
has created the first opportunity of which we are aware 
to examine the potential behavioural adaptations to 
interactions between sperm ageing and inbreeding. 
First, using a well-established protocol (White et al., 
2008), we manipulated the age of the fertilizing sperm 
to investigate whether sperm ageing exacerbates the 
detrimental effects of inbreeding on three proxies of 
fitness: eggs viability, and hatchling body condition 
and size (Helfenstein, 2002; Helfenstein et al., 2004a). 
Hence, this experimental design makes it possible 
to highlight fitness costs not otherwise detectable 
in nature if counter-strategies have evolved. Then, 
to determine whether behavioural strategies might 
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mitigate these costs, we used behavioural observations 
conducted on unmanipulated breeding pairs in another 
kittiwake population and tested whether the timing of 
copulations and sperm ejections varied with genetic 
similarity between mates.

MATERIAL AND METHODS

ExpErimEntal manipulation of spErm agE

The manipulative part of this study was conducted 
in the 2006, 2009 and 2010 breeding seasons (May–
August) on a colony of black-legged kittiwakes 
nesting on an abandoned U.S. Air Force radar tower 
on Middleton Island (59°26′N, 146°20′W), Gulf of 
Alaska. Nest sites created on the upper walls of the 
tower can be observed from inside through sliding 
one-way mirrors (Gill & Hatch, 2002). All nest sites 
were checked twice daily (09:00 and 18:00 h) to record 
laying and hatching events.

We used a protocol developed on kittiwakes during 
previous breeding seasons (White et al., 2008). Briefly, 
after pairs (N = 27) had commenced copulating, males 
were fitted with an anti-insemination ring (i.e. a 
rubber ring placed around the cloaca and maintained 
with a harness) that prevents cloacal contact and 
insemination, and hence females from receiving fresh 
sperm (White et al., 2008). Males were recaptured after 
completion of the clutch to remove their ring. Thus, 
the minimum age of sperm available for fertilization 
corresponded to the number of days the ring was 
worn before laying. Rings were fitted randomly over 
a period of 19 days preceding egg laying. As in most 
wild species, the exact duration between fertilization 
and egg laying is unknown in kittiwakes. We assumed 
that fertilization occurred 1–2 days before egg laying 
(Bakst et al., 1994). Because fertilization might have 
occurred before the ring was fitted if the male wore a 
ring for less than 2 days before laying, we excluded the 
corresponding egg from analyses (N = 2). Rings were 
inconspicuous, as they were covered by surrounding 
feathers, and they allowed normal behaviour (White 
et al., 2008).

Because inbreeding and sperm ageing are known to 
have strong effects on early-life stages (Spottiswoode 
& Moller, 2004; White et al., 2008; Hemmings et al., 
2012), we used hatching success, and chick body 
condition (body mass adjusted for tarsus length) 
and size (i.e. tarsus length) at hatching as proxies of 
fitness. Tarsus length is a good estimator of overall 
body size in adults (Rising & Somers, 1989), which 
is a good indicator of breeding success in kittiwakes 
(Helfenstein, 2002; Helfenstein et al., 2004a). On the 
day of laying, A- and B-eggs (i.e. the first and the second 
laid egg, respectively) were labelled individually with 
a non-toxic marker. To facilitate monitoring of egg 

development, eggs were removed from their nest and 
placed in artificial incubators, which does not affect 
hatching success in kittiwakes (White et al., 2008). 
We checked for embryonic development using egg 
candling, which consists in using a bright light to see 
through the shell. Eggs that did not exhibit early signs 
of embryonic development (i.e. ‘yolk spreading’; N = 4 
eggs) were conservatively excluded from the analyses 
to ensure that sperm age, and not sperm presence, was 
the only factor manipulated as in White et al. (2008). 
This led to a final sample size of 36 eggs in 24 nests. 
Eggs were placed back in their nest after 25 days of 
incubation (the incubation period of kittiwakes lasts 
27 days; Coulson & White, 1958) or as soon as external 
pipping occurred. Within 12 h of hatching, all chicks 
were weighed to the nearest gram using an electronic 
scale, and tarsus length was measured to the nearest 
millimetre using a caliper (N = 24 chicks).

To control for any potential effects caused by the ring 
itself on reproductive performance, other males were 
fitted with a thinner control ring that did not prevent 
insemination (White et al., 2008). In this control group 
(N = 43 eggs and 32 chicks), we found no significant 
association between reproductive performance and 
ring wear duration (see Supporting Information for 
details). This indicates that the potential effects on 
reproductive performance in the experimental group 
are due to sperm ageing and not to the wearing of the 
ring per se, as previously found by White et al. (2008).

obsErvation of mating bEhaviour in 
unmanipulatEd pairs

Behavioural observations were conducted in the 1999–
2001 breeding seasons (May–August) on the kittiwake 
population nesting at Cap Sizun in Brittany, France 
(48°5′N, 4°36′W), where birds can be individually 
identified using colour bands (Danchin et al., 1998).

The protocol used for behavioural observations 
is described in Helfenstein et al. (2003, 2004b). In 
summary, we used daily continuous observations 
(Altmann, 1974) to record copulations and sperm 
ejections in pairs nesting on a cliff (daily number of 
hours of observation, mean ± SD: 3.76 ± 2.06; range: 
1–10). We observed 13 pairs in 1999, 19 pairs in 2000 
and 21 pairs in 2001 (35 unique pairs in total as 14 pairs 
were observed during more than one year), in which 
both mates were banded, genotyped and observable 
from a single observation point ~30 m away. Sperm 
ejection is defined as females forcefully ejecting a 
white fluid within 90 s of the male dismounting. These 
distinctive cloacal expulsions occur non-randomly 
after copulation and are different from defaecations, 
which occur without noticeable muscular contraction 
(Helfenstein et al., 2003). We used copulations 
occurring within 20 days before the laying of the first 
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egg to allow comparison with the experimental study, 
and because kittiwakes rarely mate before this period 
(Helfenstein et al., 2004b). Cap Sizun birds were 
caught on the nest using a hook system to collect blood 
(Helfenstein et al., 2004b).

gEnEtic analysEs

For all birds, blood was taken from the alar vein 
using a 1-mL syringe and a 25-gauge needle, and 
kept in a preservative solution. DNA was extracted 
from each blood sample using either a ‘salting out’ 
protocol (Mulard et al., 2009) or the DNeasy Blood 
and Tissue Kit (Qiagen Group) following the supplier’s 
guidelines. Birds were genotyped at ten microsatellite 
loci (Mulard et al., 2009; Leclaire et al., 2012) by using 
the protocol described by Mulard et al. (2009) (N = 114 
birds). Additional DNA samples (N = 48 birds) were 
analysed subsequently by using a more recent protocol 
described by Leclaire et al. (2012). The correspondence 
between the two methods was tested by genotyping 30 
individuals using the two protocols. Correspondence 
did not match for loci K32 and RBG20 (Leclaire et al., 
2012). Genetic relatedness between mates that were 
not genotyped with the same protocol (N = 6 out of 81 
pairs) was therefore calculated without these two loci.

We used GENEPOP v.4.6 (Rousset, 2008) to test 
linkage disequilibria and deviation from Hardy–
Weinberg equilibrium (Markov chain parameters: 
10 000 dememorization steps, 100 batches and 5000 
iterations per batch). After correcting for multiple 
tests, the K16 locus appeared to be out of Hardy–
Weinberg equilibrium in both populations (P < 0.001) 
and no locus was genetically linked to another locus 
(P > 0.05). Therefore, we excluded K16 from the genetic 
relatedness analyses.

Genetic similarity between mates was calculated 
using the identity index (RID) (Mathieu et al., 1990) 
in the IDENTIX software (Belkhir et al., 2002). This 
index has been validated as a good estimator of the 
consanguinity of offspring in cases where identical 
alleles are likely to be identical by descent, something 
especially relevant when focusing on the fitness 
consequences of inbred mating (Belkhir et al., 2002). 
In addition, this index has been used in previous 
studies that revealed patterns and effects of biological 
meaning in kittiwakes (Mulard et al., 2009; Leclaire 
et al., 2012). RID was transformed to an estimate of 
genetic distance (DID) using the formula, DID = 1 – RID, 
which can theoretically range from 0 (corresponding 
to mates sharing the same microsatellite alleles) 
to 1 (corresponding to mates sharing not a single 
microsatellite allele). In our study, DID ranged from 
0.39 to 0.83 (mean ± SD: 0.64 ± 0.10; N = 46 pairs) for 
pairs from the Middleton population, and from 0.23 to 

0.61 (mean ± SD: 0.43 ± 0.09; N = 35 pairs) for pairs 
from the Cap Sizun population.

statistical analysEs

Experimental manipulation of sperm age
We tested the effect of genetic similarity and sperm 
age on each of the three proxies of fitness (i.e. hatching 
success, body condition and tarsus length at hatching) 
using mixed models. Explanatory variables were the 
genetic distance between pair members, the duration 
of ring wear (i.e. minimum sperm age), their two-
way interaction and egg rank. Tarsus length at 
hatching was included in the model built for body 
mass at hatching, which can thus be interpreted as 
size-adjusted body mass, or body condition (Garcia-
Berthou, 2001). Year and pair identity were included 
as random effects. For analyses of hatching success, 
we used a generalized linear mixed model (GLMM) 
and a binomial distribution, while for analyses of 
body mass and tarsus length, we used linear mixed 
models (LMMs). We checked for outliers by calculating 
Cook’s distance with the influence.ME package in 
R (Nieuwenhuis et al., 2012). We considered as too 
influential those data points with a Cook’s distance 
that exceeded the cut-off value 4/N, with N being the 
sample size (Nieuwenhuis et al., 2012). Analyses were 
redone when excluding the influential data, and results 
were similar (see Results). For LMMs, we checked for 
normality and homoscedasticity of residuals.

Observation of mating behaviour in 
unmanipulated pairs
As found in previous studies (Helfenstein et al., 
2004b, White, 2008), kittiwakes were rarely observed 
copulating more than once a day (18 cases over 926 
observations). Therefore, to test for a relationship 
between genetic similarity and copulation behaviour 
in unmanipulated pairs, we calculated the daily 
probability of observing at least one copulation for 
each pair (N = 53 pairs). We built a GLMM using a 
binomial distribution with this binary variable as the 
response variable. Over the 146 copulations recorded 
during this period, 38 (26%) were followed by sperm 
ejection, and no sperm ejection was observed between 
20 and 15 days before laying. Analyses of sperm 
ejection were thus restricted to the 15 days before 
laying. We tested whether sperm ejection probability 
was related to genetic similarity using a GLMM with a 
binomial distribution. For each pair (N = 45 pairs), the 
proportion of copulations followed by sperm ejection 
on a given day was used as the response variable and 
was weighted by the number of copulations [using 
the weights parameter in the glmer function from the 
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lme4 package (Bates et al., 2015) in R (R Core Team, 
2017)]. The number of days before laying, genetic 
distance between pair members and their two-way 
interaction were included as explanatory variables 
in models explaining copulation and sperm ejection. 
Pair identity nested in year and date were included as 
random effects.

In all analyses, we standardized variables before 
analysis, and models were fitted with a maximum-
likelihood estimator, and normality of the random 
effects was checked. The significance of a term in the 
model was assessed by the change in deviance after 
removal of that term (likelihood-ratio test, LRT) using 
a chi-square test. The interaction was removed when 
not significant. All statistical analyses were performed 
with R 3.4.3 (R Core Team, 2017) and the lme4 R 
package (Bates et al., 2015).

RESULTS

EffEcts of spErm agE and gEnEtic distancE on 
fitnEss proxiEs

Hatching success was significantly related to the 
interaction between genetic distance and minimum 
sperm age (N = 36, χ2

1 = 6.20, P = 0.01; Fig. 1). The 
more genetically similar mates were, the more 
sperm age impaired hatching success. There was 
no significant effect of egg rank on hatching success 
(χ2

1 = 0.73, P = 0.39). Similar results were obtained 
when influential data points were excluded (N = 33; 
genetic distance × minimum sperm age: χ2

1 = 17.92, 
P < 0.001; egg rank: χ2

1 = 0.42, P = 0.52). Body condition 
at hatching was not significantly related to any of 
the parameters we considered (N = 24, all P > 0.36) 
except egg rank (N = 24, χ2

1 = 6.36, P = 0.01), A-chicks 
being in better condition than B-chicks. Redoing 
this analysis without influential data points did not 
change the results (N = 21, all P > 0.08, except for egg 
rank: χ2

1 = 7.47, P = 0.01). Tarsus length at hatching 
was not significantly associated with the two-way 
interaction between genetic distance and minimum 
sperm age (N = 24, χ2

1 = 2.89, P = 0.09), nor with any 
other parameters (all P > 0.74). Redoing this analysis 
without influential data points did not change the 
results (N = 20, all P > 0.25).

EffEcts of gEnEtic distancE and timE on 
rEproductivE bEhaviours

The probability of copulation varied significantly 
with the interaction between genetic distance and the 
number of days before laying (χ2

1 = 7.82, P = 0.005; 
Fig. 2). The probability of copulation decreased 
markedly with increasing pairwise genetic similarity 

Figure 1. Effects of genetic distance and minimum 
sperm age (the duration of anti-insemination ring wear) 
on hatching success in (A) a 3D view and (B) a 2D view. 
Predicted values of hatching success were derived from 
the model including genetic distance between mates, the 
duration of ring wear and their interaction as fixed effects. 
For clarity, random effects (year and pair identity) were not 
considered in the model used for graphical representations. 
Removing influential data points did not change the results 
(see Results). In A, each point represents whether an egg 
hatched (red) or not (blue) and colours of the grid represent 
estimated hatching success, with blue corresponding to low 
values, red to high values and yellow/green to intermediate 
values. In B, we divided ring wear duration (2–19 days) 
in half, producing a short ring wear duration (2–9 days, 
orange points, N = 26 eggs) and a long ring wear duration 
(10–19 days, black points, N = 10 eggs). The size of the 
points represents the number of eggs. Predicted values 
were derived from the model described above by fixing 
the duration of ring wear to 5 days (i.e. short ring wear 
duration, orange curve) or 15 days (i.e. long ring wear 
duration, black curve).
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early in the reproductive season but not as laying date 
approached (Fig. 2). The probability of sperm ejection 
decreased with pairwise genetic distance (χ2

1 = 4.19, 
P = 0.04; Fig. 3A) and decreased as laying date 
approached (χ2

1 = 6.52, P = 0.01; Fig. 3B), but it did not 
vary with the interaction between these two variables 
(χ2

1 = 0.17, P = 0.68).

DISCUSSION

Our experimental manipulation of sperm age in 
kittiwakes, combined with behavioural observations 
of copulations and sperm ejections in unmanipulated 
pairs, has created a unique opportunity to investigate 
the deleterious interactions of sperm age and 
inbreeding, along with the behavioural tactics that 
can minimize them. We found that (1) sperm ageing 
and genetic similarity interacted to reduce fitness 
in the form of decreased hatching success, and (2) 
the frequency of two behavioural strategies used to 
avoid fertilization by old sperm, namely avoidance of 
early copulations and post-copulatory sperm ejection, 
increased with genetic similarity between mates.

Previous studies in kittiwakes showed that hatching 
success was independently reduced by inbreeding 
(Mulard et al., 2009) and sperm ageing (Wagner et al., 
2004; White et al., 2008). Here, by experimentally 
inducing the fertilization of eggs with old sperm, we 
found that the decrease in hatching success associated 
with sperm ageing increased with genetic similarity 
between mates, suggesting that fertilization by old 
sperm can exacerbate the detrimental effects of 
inbreeding. Our results add to those in D. melanogaster 
(Tan et al., 2013), and suggest that the deleterious 
interaction between sperm age and inbreeding may 
be found across several taxa, which may provide 
new insights into inbreeding–stress interactions in 
vertebrates (Marr et al., 2006; Pemberton et al., 2017; 
Ihle et al., 2017). However, we did not detect any effects 
of the interplay between inbreeding and sperm ageing 
on hatchling body condition and size. These results are 
in line with several studies that have reported that the 
effects of inbreeding and sperm ageing are especially 
high during embryo development (Tarin et al., 2000; 
Hemmings et al., 2012; Spottiswoode & Moller, 2004; 
Reinhardt, 2007).

We observed that more genetically similar pairs 
copulated more frequently as egg-laying approached 
compared to more genetically distant pairs. In 
addition, females that were more genetically similar 
to their mate ejected sperm more frequently. The 
increase in copulation rate over the course of the pre-
laying period in kittiwakes (Helfenstein et al., 2004b) 

Figure 2. The probability of copulation over time and 
according to genetic distance (A) in a 3D view and (B) in 
a 2D view. Predicted values of copulation probability were 
derived from the model including genetic distance between 
mates, number of days before laying of the first egg and 
their interaction. For clarity, random effects (pair identity 
nested in the year and Julian day) were not considered 
in these models for graphical representations. In A, each 
point represents whether a pair copulated (red) or not 
(blue) during a given day of observation. In B, we divided 
the period before laying (20–0 days) in half, producing a 
late period (0–9 days before laying, in orange, N = 456 
observations) and an early period (10–20 days before 
laying, in black, N = 470 observations). The size of the 
points represents the number of observations. Predicted 
values were calculated by fixing the time before laying to 
5 days (i.e. early period, orange line) or 15 days (i.e. late 
period, black line).
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and other birds (Birkhead & Moller, 1992), as well as 
post-copulatory sperm ejections, have been suggested 
to be two behavioural strategies that can prevent 
fertilization by aged sperm (Wagner et al., 2004; 
White et al., 2008). Here, we showed that these two 

strategies are preferentially used by more genetically 
similar pairs, probably as an adaptation to limit 
the increasing reproductive costs of old sperm with 
inbreeding. Similar parental modulation of the effects 
of inbreeding has been suggested in the Japanese 
quail (Coturnix japonica) and the burying beetle 
(Nicrophorus vespilloides), where inbreeding effects 
are reduced when females allocate more resources 
to their offspring (Pilakouta et al., 2015; Pilakouta 
& Smiseth, 2016; Ihle et al., 2017). This plasticity in 
behaviours according to genetic distance implies that 
individuals can assess their genetic similarity to their 
mate. In a large range of species, genetic similarity 
is assessed using odour cues (Radwan et al., 2008; 
Charpentier et al., 2010; Leclaire et al., 2017; Parrott 
et al., 2007). However, although kittiwake odours do 
vary with genetic relatedness (Leclaire et al., 2012), 
the ability of kittiwakes to use this cue has not yet 
been explored.

In addition to mating behaviours, other strategies 
based on parental phenotypic traits may modulate 
the reproductive consequences of the interplay 
between inbreeding and sperm ageing. For example, 
parental age, i.e. the pre-meiotic senescence of the 
diploid organism, has been suggested to heighten 
inbreeding effects (Fox & Reed, 2010) and sperm 
susceptibility to sperm ageing (Zubkova & Robaire, 
2006; Paul & Robaire, 2013; Risopatron et al., 2018), 
and might thus modulate the costs associated with 
their interaction. In D. melanogaster, the reproductive 
costs of the interaction between inbreeding and sperm 
ageing were modulated by parental age, with young 
parents suffering higher costs than older ones (Tan 
et al., 2013). This may be explained by differential 
resource allocation into eggs between old and young 
parents (Bogdanova et al., 2006; Ihle et al., 2017; 
Beamonte-Barrientos et al., 2010). If parental age 
modulates the reproductive costs of the interaction 
between inbreeding and sperm ageing in kittiwakes, 
we predict that breeding individuals would plastically 
adapt their behaviour in response to both age and 
within-pair genetic similarity. Female kittiwakes 
may be more likely to use the behavioural strategies 
preventing fertilization by aged sperm (i.e. avoidance 
of precocious copulations, and sperm ejection after 
precocious copulations) when paired with an old, 
genetically similar, male.

Our results raise also questions about the role of the 
interaction between sperm ageing and inbreeding in 
the strategies displayed by polyandrous species. For 
instance, when inbreeding interacts with sperm age to 
decrease fitness, we expect female cryptic preference 
for genetically dissimilar males to vary with sperm 
age. Females may not necessarily avoid inbreeding 
when inseminated with fresh sperm or they may bias 
fertilization towards the freshest sperm independently 

Figure 3. Post-copulatory sperm ejection probability (A) 
according to genetic distance and (B) over time. Each point 
represents the proportion of copulations followed by sperm 
ejection for a given pair on a given day and the size of the 
points represents the number of pairs. Kittiwakes rarely 
copulate more than once a day, meaning that sperm ejection 
probabilities were mostly equal to 1 (in red) or 0 (in blue). 
The regression lines represent the predicted values derived 
from the models including genetic distance between mates, 
number of days before laying of the first egg and their 
interaction. For clarity, random effects (pair identity nested 
in the year and Julian day) were not considered in these 
models for graphical representations. Predicted values 
were calculated in A by fixing the time before laying to 
the median number of days (i.e. 7 days) and in B by fixing 
genetic distance to the median value (i.e. 0.43).
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of males’ genetic characteristics (Gasparini et al., 
2018). The existence of such an interaction might 
partly explain why cryptic inbreeding avoidance is not 
ubiquitously found in nature (Mongue et al., 2015) and 
emphasizes the importance of controlling for sperm 
age (or sperm quality) when testing for cryptic female 
sperm choice (Denk et al., 2005).

An unresolved question is which sex is responsible 
for the behavioural patterns observed in our study. In 
kittiwakes, males and females may have a common 
interest in avoiding fertilization by old sperm because 
they share the same reproductive success (Kvarnemo, 
2018). However, sexual conflict over mating behaviour 
can also arise in genetically monogamous species 
because the costs and benefits associated with these 
behaviours may differ between sexes (Helfenstein 
et al., 2003; White, 2008). For instance, repeated 
copulations increase the likelihood of sexually 
transmitted pathogen transmission (Sheldon, 1993), 
especially in females (White, 2008; White et al., 2010; 
van Dongen et al., 2019). Therefore, although, in 
kittiwakes, both males and females have some control 
over copulations (White, 2008), the observed absence 
of seasonally early copulations in more genetically 
similar pairs (Fig. 2) is probably due to an absence 
of solicitations of copulation by females, which might 
suffer from repeated copulations more than males. 
Additionally, males also have some control over sperm 
ejection, which, despite being a female behaviour, can 
be prevented when males remain on the female’s back 
after insemination (Helfenstein et al., 2003).

Our results suggest that sperm ageing can exacerbate 
the deleterious effects of inbreeding in a vertebrate and 
that individuals can plastically adapt their behaviour 
in response to these selective pressures. Such best-of-
a-bad-job strategy might allow monogamous species 
to avoid the fitness costs associated with delayed 
reproduction in a given breeding season (Cam et al., 
2003). Overall, our study highlights the selective 
pressures sperm ageing and inbreeding may exert on 
the evolution of reproductive behaviour.
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